Best Current Practices
for SUSE® Linux Enterprise High Availability 12

Lars Marowsky-Brée
Distinguished Engineer
lmb@suse.com
<table>
<thead>
<tr>
<th>Agenda</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td>Summary of cluster architecture</td>
</tr>
<tr>
<td>Common configuration issues</td>
</tr>
<tr>
<td>Gathering cluster-wide support information</td>
</tr>
<tr>
<td>Exploring effects of cluster events</td>
</tr>
<tr>
<td>Self-written resource agents</td>
</tr>
<tr>
<td>Understanding log files</td>
</tr>
</tbody>
</table>
Introduction
Overview
SUSE® Linux Enterprise High Availability Extension

• Most modern and complete open source solution for implementing high available Linux clusters
• A suite of robust open source technologies that is:
 ‒ Affordable
 ‒ Integrated
 ‒ Virtualization agnostic
• Used with SUSE Linux Enterprise Server, it helps to:
 ‒ Maintain business continuity
 ‒ Protect data integrity
 ‒ Reduce unplanned downtime for your mission-critical Linux workloads
Current status
SUSE® Linux Enterprise High Availability

Fighting Murphy's Law

• Service failover at any distance – from local to geo
• 99.9999% availability with the appropriate tuning
• Rolling updates for less *planned* downtime
• Easy setup, administration, management
• Virtualization agnostic
• Leading open source High Availability
• On par with proprietary products

When will you start?
Benefits
SUSE® Linux Enterprise High Availability

- Quickly and easily install, configure and manage clustered Linux servers
- Ensure continuous access to your mission-critical systems and data
- Transparent to Virtualization – nodes can be virtual or physical
- Meet your Service Level Agreements
- Increase service availability
Overview
SUSE® Linux Enterprise High Availability Extension

- Service availability 24/7
 - Policy driven clustering
- Shared and Scaled data-access
 - Cluster file system
 - Clustered Samba
- Geo Clustering
 - Cluster across unlimited distance
- Virtualization Agnostic
 - Platform independent setup
- Disaster tolerance
 - Data replication via IP
 - Node recovery
- Scale network services
 - IP load-balancing
- User friendly tools
 - Graphical user interface
 - Unified command line interface
- Free Resource Agents
Delivery
SUSE® Linux Enterprise High Availability Extension

- Extension to and with SUSE Linux Enterprise Server
- Releases synchronized with base server product
- Sold as annual support subscriptions
- Inherits the support level of the underlying SUSE Linux Enterprise Server subscription
- Included for free with IBM System z subscriptions
- Charged for 64bit Intel/AMD platform
- Free trial available
Key Use Cases
SUSE® Linux Enterprise High Availability Extension

• High availability for mission-critical services
• Active/active services
 – OCFS2, Databases, Samba File Servers
• Active/passive service fail-over
 – Traditional databases, SAP setups, regular services
• Private Cloud
 – HA, automation and orchestration for managed VMs
• High availability across guests
 – Fine granular monitoring and HA on top of virtualization
• Remote clustering
 – Local, Metro, and Geographical area clusters
Key Use Cases
SUSE® Linux Enterprise High Availability Extension

Simple Stack HA
- Node A: Local Disk, Import/Export, /sapmnt/SID
- Node B: Local Disk, Import/Export, /sapmnt/SID

Enqueue Replication
- Node A: SAP system - database - SAP (A)SCS
- Node B: SAP system - SAP Enq-Repl

DRBD Data Replication
- Node A: DRBD master SAP system
- Node B: DRBD slave SAP system

NFS and SAP in one Cluster
- NFS Mount Point: /export, /sapmnt
- SID: global profile

HA in Virtualized Environments
- Cluster nodes on virtual systems
- Clustered Hyper Visor on physical systems
Version 12 – Key Features
SUSE® Linux Enterprise High Availability Extension

- Major code refresh to latest upstream versions
- Pacemaker
 - Object tagging
 - Significant CIB performance
- Cluster Shell:
 - Health evaluation
 - Improved error reporting and syntax
 - Support corosync configuration
- hawk
 - Improved wizards
 - History explorer
- Geo extension
 - Improved algorithm
 - Per-site attributes in CIB
 - DNS-based IP fail-over
- GFS2 now supported in r/w mode
- New, additional fence-agents
Hawk – Cluster Dashboard & Diagram
Usability - Hawk

Cluster Status

Summary
Cluster Configuration
- STONITH Enabled: true
- No Quorum Policy: ignore
- Symmetric Cluster: true
- Resource Stickiness: 0

Tickets
- Granted: 1
- Revoked: 1

2 nodes configured
- Online: 1
- Standby: 1

9 resources configured
- Started: 4
- Stopped: 5

Details
- xxx: Started: sles11sp3-1
- www: Started: sles11sp3-1
- dummy: Started: sles11sp3-1
- d2: Started: sles11sp3-1

www

Attributes
- target-role: Started

sles11sp3-0
- Fail Count: 0

sles11sp3-1
- Fail Count: 1
- Last Failure: Mon Feb 11 2013 16:03:11 GMT+1100 (EST)

Close
Cluster Architecture
3 Node Cluster Overview

Network Links

Xen VM 1
LAMP Apache IP ext3

Kernel

Xen VM 2

clVM2+OCFS2

DLM

Pacemaker

Corosync + openAIS

Kernel

Client

Storage
Detailed View of Components
Per Node:

- LVS
- DRBD
- MPIO
- Corosync
- YaST2

Linux Kernel

- SCTP
- TCP
- UDP
- Bonding
- Ethernet
- Infiniband

Resource Agents
- LSB init
- systemd units
- DRAC
- iLO
- SBD
- Fencing
- CIB
- Policy Engine
- Pacemaker
- Corosync

Custom agents
- SAP
- MariaDB
- libvirt
- Xen
- Apache
- iSCSI
- IP address
- Filesystems
- DRBD
- clvmd
- dlm_controld

DRBD
- clvmd
- dlm_controld

Local Disks
- SAN FC(oE), iSCSI

cLVM2
- Multipath IO

DLM
- OCFS2
- GFS2

XFS
- OCFS2
- GFS2
- cLVM2
- DLM

Detailed View of Components
Per Node:

- OCFS2
- GFS2
- DLM
Why Is This Talk Necessary?

We heard comments:

• Can't you just make the software stack really easy to understand?

• Why is a multi-node setup more complicated than a single node?

• Gosh, this is awfully complicated! Why is this stuff so powerful? I don't need those other features!

This session addresses most of these questions
Simplify Your Cluster by Using More Features!
Reducing CIB Duplication

- Resource templates
 - Define resources once, inherit often
 - Define a constraint just once, all inherited resources

```ini
rsc_template t_vm ocf:heartbeat:VirtualDomain
  op monitor interval="20s" timeout="60s"
  op migrate_to timeout="300s" interval="0"
  op migrate_from timeout="300s" interval="0"
  meta allow-migrate="false" target-role="Started"
  utilization cpu="2" memory="1024"
  params autoset_utilization_cpu="false"
  migration_transport="ssh"
  hypervisor="qemu:///system"
  autoset_utilization_hv_memory="false" force_stop="true"
```

```ini
primitive vm-01 @t_vm
  params config="/cluster/vmstore/vm-01.xml"
primitive vm-02 @t_vm
  params config="/cluster/vmstore/vm-02.xml"
...
```

colocation colo-fs-vm inf: t_vm baseclone

order order-fs-vm Mandatory: baseclone t_vm
Reducing CIB Duplication, part 2

- Parameters that are shared only need to be specified once
- Reference parameters from other resources

primitive vip IPAddr2 params $my-ip:ip=192.168.0.1
primitive www apache params @my-ip:server_ip
Referring to Many Objects As One

- Assign arbitrary tags to objects
 - Does not imply any ordering or collocation
 - Can be used in constraints or in crmsh commands

```
tag sap1 DB1 SAPEV2
crm resource start sap1
crm resource stop sap1
```
Automate Resource Placement

- Define the capacity that nodes provide &
- Specify how much capacity resources consume
- Set “placement-strategy=balanced”
- Nodes will never over-commit, and make a reasonable attempt at load distribution
- Avoid lengthy & complex rsc_location constraints

```bash
node hex-1 \
  utilization memory="8192" cpu="32"
primitive dummy1 ocf:heartbeat:Dummy \
  utilization cpu="1" memory="512"
```
CLI Management For the Cluster Itself

• Manage the corosync configuration via crmsh!
 – “crm cluster” mode: add/remove nodes, init a new cluster
 – health evaluation of the cluster state

• Improved cluster-bootstrap tools
crm Shell Improvements

• Find out what resource agents are doing, exactly!
 - # crm resource (un)trace sap_DB start

• Test a resource before committing:
 - # crm configure rsctest sap_DB

• Interrogate the cluster history
 - # crm history help
Design and Architecture Considerations
General Considerations

• Consider the support level requirements of your mission-critical systems.

• Your staff is your key asset!
 – Invest in training, processes, knowledge sharing.
 – A good administrator will provide higher availability than a mediocre cluster setup.

• Get expert help for the initial setup, and

• Write concise operation manuals that make sense at 3am on a Saturday ;-)

• Thoroughly test the cluster regularly.
 – Use a staging system before deploying large changes!
Manage Expectations Properly

- Clustering improves reliability, but does not achieve 100%, ever.
- Fail-over clusters reduce service outage, but do not eliminate it.
- High Availability protects data before the service.
- Clusters are more complex than single nodes.
- Clustering broken applications will not fix them.
- Clusters do not replace backups, RAID, or good hardware.
Complexity Versus Reliability

• **Every** component has a failure probability.
 - Good complexity: Redundant components.
 - Undesirable complexity: chained components.
 - Choke point → single point of failure
 - Also consider: Administrative complexity.

• **Use as few components (features) as feasible.**
 - Our extensive feature list is **not** a mandatory checklist for your deployment ;-)

• **What is your fall-back in case the cluster breaks?**
 - Backups, non-clustered operation
 - Architect your system so that this is feasible!
Cluster Size Considerations

• More nodes:
 – Increased absolute redundancy and capacity.
 – Decreased relative redundancy.
 – One cluster → one failure and security domain.
 – HA is not HPC.

• Does your work-load scale well to more nodes?

• Choose odd node counts
 – 4 and 3 node clusters both lose majority after 2 nodes.

• Question:
 – 5 cheaper servers, or
 – 3 higher quality servers with more capacity each?
Common Setup Issues
General Software Stack

• Please avoid chasing already solved problems!

• Please apply all available software updates:
 - SUSE® Linux Enterprise Server 12
 - SUSE Linux Enterprise High Availability Extension

• Consider migrating to SUSE Linux Enterprise High Availability Extension 12, if you have not already.
From One to Many Nodes

• **Error**: Configuration files not identical across nodes.
 - `/etc/drbd.conf`, `/etc/corosync/corosync.conf`,
 `/etc/ais/openais.conf`, resource-specific configurations ...

• **Symptoms**: Causes weird misbehavior, works one but not on other systems, interoperability issues, and possibly others.

• **Solution**: Make sure they are synchronized.
 - SUSE® Linux Enterprise High Availability Extension 11 SP2 and up provide “csync2” to do this automatically for you.
 - You can add your own files to this list as needed.
Networking

• Switches must support multicast properly.
• Bonding is preferable to using multiple rings:
 – Reduces complexity
 – Exposes redundancy to all cluster services and clients
• Firewall rules are not your friend.
• Keep firmware on switches up-to-date!
• Make NIC names identical on all nodes
• Local hostname resolution versus DNS
• Setup NTP for time synchronization.
Fencing (STONITH)

• Error: Not configuring STONITH at all
 – It defaults to enabled, resource start-up will block and the cluster simply do nothing. This is for your own protection.

• Warning: Disabling STONITH
 – DLM/OCFS2 will block forever waiting for a fence that is never going to happen.

• Error: Using “external/ssh”, “ssh”, “null” in production
 – These plug-ins are for testing. They will not work in production!
 – Use a “real” fencing device or external/sbd

• Error: configuring several power switches in parallel.

• Error: Trying to use external/sbd on DRBD
CIB Configuration Issues

- 2 node clusters cannot have majority with 1 node failed
 - # crm configure property no-quorum-policy=ignore

- Resources are starting up in “random” order or on “wrong” nodes
 - Add required constraints!

- Resources move around when something “unrelated” changes
 - # crm configure property default-resource-stickiness=1000

- # crm_verify -L ; ptest -L -VVVV
 - Will point out some basic issues
Configuring Cluster Resources

• **Symptom:** On start of one or more nodes, the cluster restarts resources!

• **Cause:** resources under cluster control are also started via the “init” sequence.
 - The cluster “probes” all resources on start-up on a node, and when it finds resources active where they should not be – possibly even more than once in the cluster –, the recovery protocol is to stop them all (including all dependencies) and start them cleanly again.

• **Solution:** Remove them from the “init” sequence.
Setting Resource Time-outs

• **Belief**: “Shorter time-outs make the cluster respond faster.”

• **Fact**: Too short time-outs cause resource operations to “fail” erroneously, making the cluster unstable and unpredictable.
 - A somewhat too long time-out will cause a fail-over delay;
 - a slightly too short time-out will cause an unnecessary service outage.

• Consider that a loaded cluster node may be slower than during deployment testing.
 - Check “crm_mon -t1” output for the actual run-times of resources.
OCFS2

• Using ocfs2-tools-o2cb (legacy mode)
 - O2CB only works with Oracle RAC; full features of SUSE® Linux Enterprise High Availability Extension are only available in combination with Pacemaker
 - # zypper rm ocfs2-tools-o2cb
 - Forget about /etc/ocfs2/cluster.conf, /etc/init.d/ocfs2, /etc/init.d/o2cb and /etc/sysconfig/ocfs2

• Nodes crash on shutdown
 - If you have active ocfs2 mounts, you need to umount before shutdown

• Consider: Do you really need OCFS2?
 - Can your application really run concurrently?
Distributed Replicated Block Device

• Myth: has no shared state, thus no STONITH needed.
 – **Fact:** DRBD still needs fencing!

• **Active/Active:**
 – Does not magically make ext3 or applications concurrency-safe, still can only be mounted once
 – With OCFS2, split-brain is still fatal, as data diverges!

• **Active/Passive:**
 – Ensures only one side can modify data, added protection.
 – Does not magically make applications crash-safe.

• **Issue:** Replication traffic during reads.
 – “noatime” mount option.
Storage in General

• Activating non-battery backed caches for performance
 - Causes data corruption.

• iSCSI over unreliable networks.

• Lack of multipath for storage.

• Believing that RAID replaces backups.
 - RAID and replication immediately propagate logical errors!

• Please ensure that device names are identical on all nodes.
Exploring the Effect of Events
What Are Events?

• All state changes to the cluster are events
 - They cause an update of the CIB
 - Configuration changes by the administrator
 - Nodes going up or going down
 - Resource monitoring failures

• Response to events is configured using the CIB policies and computed by the Policy Engine

• This can be simulated using ptest
 - Available comfortably through the “crm” shell
Simulating Node Failure

hex-0:~ #crm

crm(live)# cib new sandbox

INFO: sandbox shadow CIB created

crm(sandbox)# cib cibstatus node hex-0 unclean

crm(sandbox)# simulate
Simulating Node Failure
Simulating Resource Failure

crm(sandbox)# cib cibstatus load live

crm(sandbox)# cib cibstatus op

usage: op <operation> <resource> <exit_code> [<op_status>] [<node>]

crm(sandbox)# cib cibstatus op start dummy1 not_running done hex-0

crm(sandbox)# cib cibstatus op start dummy1 unknown timeout hex-0

crm(sandbox)# configure simulate

ptest[4918]: 2010/02/17_12:44:17 WARN: unpack_rsc_op: Processing failed op dummy1_start_0 on hex-0: unknown error (1)
Simulating Resource Failure
Exploring Configuration Changes

```bash
crm(sandbox)# cib cibstatus load live

crm(sandbox)# configure primitive dummy42 ocf:heartbeat:Dummy

crm(sandbox)# simulate actions nograph

notice: LogActions: Start dummy42 (hex-2)
```
Configuration Changes - Woah!
Log Files and Their Meaning
hb_report Is The Silver Support Bullet

- Compiles
 - Cluster-wide log files,
 - Package state,
 - DLM/OCFS2 state,
 - System information,
 - CIB history,
 - parses core dump reports (install debuginfo packages!)
 - into a single tarball for all support needs.

hb_report -n “node1 node2 node3” -f 12:00 /tmp/hb_report_example1
Logging

• “The cluster generates too many log messages!”
 – Alas, customers are even more upset when asked to reproduce a problem on their production system ;-)

• System-wide logs: /var/log/messages

• CIB history: /var/lib/pacemaker/pengine/*
 – All cluster events are logged here and can be analyzed with hindsight (python GUI, ptest, and the crm shell).

• Logging can be selectively bumped to “blackbox” logging at runtime for debugging
Where Is the Real Cause?

• The answer is **always** in the logs
• Even though the logs on the DC may print a reference to the error, the real cause may be on another node.
• Most errors are caused by resource agent misconfiguration.
Correlating Messages to Their Cause

- Feb 17 13:06:57 hex-8 pengine: [7717]: WARN: unpack_rsc_op: Processing failed op ocfs2-1:2_monitor_20000 on hex-0: not running (7)
 - This is not the failure, just the Policy Engine reporting on the CIB state! The real messages are on hex-0, grep for the operation key:

- Feb 17 13:06:57 hex-0 Filesystem[24825]: [24861]: INFO: /filer is unmounted (stopped)

- Feb 17 13:06:57 hex-0 crmd: [7334]: info: process_lrm_event: LRM operation ocfs 2-1:2_monitor_20000 (call=37, rc=7, cib-update=55, confirmed=false) not running
 - Look for the error messages from the resource agent before the lrmd/pengine lines!
History Info (loads the report)

```
xen-f:~ # crm history info
INFO: fetching new logs, please wait ...
Source: live
Created on: Thu Sep 12 12:58:41 CEST 2013
By: hb_report -Z -f Thu Sep 12 11:56:18 2013 /var/cache/crm/history/live
Nodes: xen-f xen-g
Groups: web-server nfs
Resources: s-libvirt drbd0-vg fs virtual-ip nfs-server web-ip apache p_drbd_nfs s-sbd
Transitions: 651 652 653
```

```
Source: bug-825765_hb_report-Mon-13-May-2013.tar.bz2
Created on: --:--:--
By: unknown
Nodes: rad4-a rad4-b
Groups: network_grp
Resources: fence phmd snmp_mon service_ip default_gw RP mibreader dbrads pingnet
Transitions: 66 67 68 70 71 72 73 74 75 76 77 78 3 4 335 336 337 338 339
```

```
[0]hex-10:825765 >
```
Basic Transition Usage

```bash
crm(live)# resource start apache
crm(live)# history transition
INFO: fetching new logs, please wait ...
INFO: running ptest with /var/cache/crm/history/live/xen-f/pengine/pengine-pe-input-638.bz2
INFO: starting dotty to show transition graph
warning: unpack_nodes: Blind faith: not fencing unseen nodes
  total 4 actions: 4 Complete
Sep  5 15:18:17 xen-f crmd[12627]: notice: te_rsc_command: Initiating action 2
  8: start apache_start_0 on xen-f (local)
Sep  5 15:18:18 xen-f apache(apache)[29141]: INFO: httpd2: Could not reliably determine the server's fully qualified domain name, using 10.2.13.56 for ServerName
Sep  5 15:18:18 xen-f crmd[12627]: notice: process_lrm_event: LRM operation apache_start_0 (call=309, rc=0, cib-update=370, confirmed=true) ok
crm(live)#
```
Resource Events

- Tue Sep 15 20:46:27 CEST 2010

Usage:

```
............
  limit [<from_time>] [<to_time>]
............

Examples:

............
  limit 10:15
  limit 15h22m 16h
  limit "Sun 5 20:46" "Sun 5 22:00"
............

crm(live)history# timeframe 15:17
crm(live)history# resource apache
INFO: 23: fetching new logs, please wait ...
```

```
Sep 5 15:18:17 xen-f crmd[12627]: notice: te_rsc_command: Initiating action 28: start apache_start_0 on xen-f (local)
Sep 5 15:18:18 xen-f apache(apache)[29141]: INFO: httpd2: Could not reliably determine the server's fully qualified domain name, using 10.2.13.56 for ServerName
Sep 5 15:18:18 xen-f crmd[12627]: notice: process_lrm_event: LRM operation apache_start_0 (call=309, rc=0, cib-update=370, confirmed=true) ok
```

crm(live)history#
Node Events

crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history# node xen-g
Sep 5 16:54:26 xen-f corosync[12617]: [pcmk] info: pcmpk_peer_update: lost: xen-g 957153802
Sep 5 16:54:26 xen-f pengine[12626]: warning: pe_fence_node: Node xen-g will be fenced because the node is no longer part of the cluster
Sep 5 16:54:26 xen-f pengine[12626]: warning: stage6: Scheduling Node xen-g for STONITH
Sep 5 16:54:26 xen-f crmd[12627]: notice: te_fence_node: Executing reboot fencing operation (47) on xen-g (timeout=60000)
Sep 5 16:54:37 xen-f stonith-ng[12623]: notice: log_operation: Operation 'reboot' [10441] (call 3 from crmd.12627) for host 'xen-g' with device 's-sbd' returned: 0 (OK)
Sep 5 16:55:17 xen-g corosync[2766]: [MAIN] Corosync Cluster Engine ('1.4.6') started and ready to provide service.
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
crm(live)history#
Debugging Resource Agents
Common Resource Agent Issues

• Operations must succeed if the resource is already in the requested state.

• “monitor” must distinguish between at least “running/OK”, “running/failed”, and “stopped”
 – Probes deserve special attention

• Meta-data must conform to DTD.

• 3rd party resource agents do not belong under /usr/lib/ocf/resource.d/heartbeat – chose your own provider name!

• Use ocf-tester to validate your resource agent.
ocf-tester Example Output

hex-0:~ # ocf-tester -n Example
/usr/lib/ocf/resource.d/bs2010/Dummy

Beginning tests for /usr/lib/ocf/resource.d/bs2010/Dummy...

* Your agent does not support the notify action (optional)
* Your agent does not support the demote action (optional)
* Your agent does not support the promote action (optional)
* Your agent does not support master/slave (optional)
* rc=7: Stopping a stopped resource is required to succeed

Something Hangs and I Don’t Know Where ...

```
hex-0:~ # export OCF_RESKEY_sid=MyDB
hex-0:~ # bash -x
/usr/lib/ocf/ocf/resource.d/heartbeat/oracle
monitor 2>&1 | \
while read L ; do echo "$(date) $L" ; done
```
More about High Availability with SUSE Linux Enterprise

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS7318</td>
<td>A Geo Redundant Cloud VoIP Service</td>
</tr>
<tr>
<td>HO7695</td>
<td>Automated Deployment of a Highly Available OpenStack Cloud</td>
</tr>
<tr>
<td>TUT7320</td>
<td>Highly Available 2 Node Cluster with KVM</td>
</tr>
<tr>
<td>TUT8023</td>
<td>High Availability Storage</td>
</tr>
<tr>
<td>TUT8155</td>
<td>Best Practices: Linux High Availability with VMware Virtual Machines</td>
</tr>
</tbody>
</table>

Thank you.
Questions and Answers
Unpublished Work of SUSE. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE.
Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of
their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated,
abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE.
Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a
product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making
purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document,
and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The
development, release, and timing of features or functionality described for SUSE products remains at the sole
discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at
any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in
this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All
third-party trademarks are the property of their respective owners.