CAS7318

A Geo Redundant Cloud VoIP Service
Based on Geo Clustering for SUSE Linux Enterprise Server High Availability Extension

Brett Buckingham
Managing Director, silhouette Research and Development
Broadview Networks
bbuckingham@broadviewnet.com
Abstract

Broadview Networks' "OfficeSuite Phone" is a cloud-based VoIP service used by over 120,000 business subscribers daily. The primary product underlying OfficeSuite Phone, silhouette, is a carrier-grade telecom product. We have recently extended silhouette's existing high availability architecture to support geographic redundancy. This presentation is a case study of the use of Geo Clustering for SUSE Linux Enterprise High Availability Extension. We will outline the challenges and solutions to several aspects of geo redundancy, including database replication, filesystem replication, geo cluster overlay, and the design of a dead man's switch to control geo failover.
Table of Contents

- Product overview
- Rationale for geo redundancy
- Geo redundancy overview
- Geo cluster architecture
- Database replication
- Filesystem replication
- Dead man's switch
- Lessons learned
Product Overview
Product Overview

- *silhouette* is sold to cloud services providers (CSPs)
- CSPs use *silhouette* to provide phone service to small to medium businesses
- 1 *silhouette* supports 20,000 subscribers (e.g. equivalent of 1000 PBXs with 20 subscribers each)
- Cloud VoIP: only phones and IP network at customer site
- Businesses manage their phone service entirely via a web interface
- Broadview Networks hosts the OfficeSuite service based on *silhouette* (*Broadview is a CSP*), and also licenses *silhouette* to other CSPs
Phone System Managed via Web

![OfficeSuite™](image)

Use this page to configure the memory keys on your phone with the features you use the most. Select the features you would like associated with the memory keys on your phone, or do nothing and use the pre-assigned defaults.

Fields highlighted in blue indicate custom key mapping. Fields highlighted in grey indicate locked key mappings.

<table>
<thead>
<tr>
<th>Phone Model</th>
<th>Current Key Profile</th>
</tr>
</thead>
<tbody>
<tr>
<td>S350 IP Phone</td>
<td>No profile assigned</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>BVN Bridge</th>
<th>Twinking</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unassigned</td>
<td>Unassigned</td>
</tr>
<tr>
<td>Unassigned</td>
<td>Fwd: Prompt</td>
</tr>
<tr>
<td>Unassigned</td>
<td>Fwd: Coverage</td>
</tr>
<tr>
<td>Unassigned</td>
<td>Intercom</td>
</tr>
<tr>
<td>Unassigned</td>
<td>Line</td>
</tr>
<tr>
<td>Page</td>
<td>Line</td>
</tr>
<tr>
<td>Park/Retrieve</td>
<td>Line</td>
</tr>
</tbody>
</table>

[Print Key Labels] [Reset Keys] [Configure Ring Tones]
silhouette is Widely Deployed

• Broadview Networks has 14 silhouette systems in production underpinning the OfficeSuite Phone service, serving over 120,000 business users every day

• Broadview licenses silhouette to 17 other CSPs worldwide, which combined serve an additional 60,000 business users every day
silhouette is Carrier-Grade

As a product intended to be hosted by cloud and telecom service providers, silhouette is subject to carrier-grade requirements, such as:

• Availability: 99.999%
• Reliability: 99.99%
• Scalability and throughput
• Real-time responsiveness
• Manageability and serviceability
• Security
Other Product Information

• Developed over past 13 years; in live production service for 10 years
• Software only

Comprised of several (25+) software components
Deployed on carrier-class X64 servers
SLES+HAE+Geo is embedded in the product
Interfaces with network peer components for some functions

• Deployed on 3 servers over 2 tiers:
Web-tier: single node HA “cluster”
Call-tier: 2 node HA cluster
Network Diagram

Internet

web tier

VoIP ALG

Managed Network

call tier

0

1

voicemail
media svr
PSTN gwy

PSTN
Rationale for Geo Redundancy
Why Geo Redundancy?

- Customers expect it / require it
- Business continuity safeguard
Expectations of a Cloud Service

• Using a cloud service means trusting a CSP to provide and manage the service. There can be an emotional barrier to trust a 3rd party vs. control the service in-house.

• If the service is business critical (e.g. phone, email), the emotional barrier can be amplified.

• Cloud services are presumed to be relocatable, distributed, resilient, not tied down to hardware or location; this can help to offset the angst.

• Geo redundancy is at least an implicit expectation, and often is an explicit RFP check box, especially by customers who have recently experienced a disaster.
Business Continuity / Disaster Recovery

- Business continuity refers to plans, policy, preparation, and procedure to safeguard a business and continue its operations despite serious incidents or disasters.
- Some disasters are related to geography, e.g. flood zones, earthquake fault lines, common public utilities, etc.
- A geo redundant system intends to safeguard the system against geographic disasters, therefore redundant systems should be geographically diverse.
Our Experience with Hurricane Sandy

• Destructive and deadly Atlantic hurricane in October 2012 which affected Caribbean and east coast of North America

• Well prepared (100% uptime), but learned a lot

• In one of Broadview's telecom central offices in NYC:

 Commercial power down for 2 weeks, then unreliable for 2 additional months. We were on generator power throughout.

 Basement and lobby flooded, travel in/out of Manhattan impossible. Operations personnel on-site continuously for several days

 Some circuits from peering partners were down, and ultimately some partner COs were unrecoverable due to salt water damage
Geo Redundancy Overview
System and Network Peers

- PSTN gateway
- Media server
- Voicemail
- VoIP ALG

silhouette
Replication to Backup System

- PSTN gateway
- Media server
- Voicemail
- VoIP ALG

silhouette ➔ silhouette

- Laptop
- Telephone
Primary System Failure Detected

- PSTN gateway
- Media server
- Voicemail
- VoIP ALG

Silhouette

19
Backup System Promoted

- PSTN gateway
- Media server
- Voicemail
- VoIP ALG

silhouette

silhouette
Network Peers Connect to New Primary

- PSTN gateway
- Media server
- Voicemail
- VoIP ALG

silhouette

silhouette
Recovered System Becomes New Backup
Basic Concepts

• Continuously replicate *silhouette* configuration and operational data to a backup geo site

• Only the primary geo site (typically) provides service at any one time

• Detect failure of primary site, promote backup to primary

• Implement mechanisms for network peers and phones (i.e. client systems) to recognize and tolerate *silhouette* changing location (IP)
Geo Cluster Architecture
Geo Cluster

- Employs Geo Clustering for SUSE Linux Enterprise High Availability Extension
- *Silhouette* primary and backup geo sites are linked in a geo cluster to an arbitrator node in a 3rd geo site
- Only call tier nodes participate in the geo cluster; web tier nodes are subordinate to and controlled by the call tier
- Typically only one *silhouette* provides service at any one time, as directed by a ticket scheme in the geo cluster
Geo Cluster
Database Replication
High Availability Databases

- *silhouette* contains 2 databases:
 - Main database: provisioned system and business data
 - Billing database: call records
- Both databases are implemented with PostgreSQL
- Each database has HA requirements, and employs PostgreSQL streaming replication to a warm standby slave within local cluster
- Stock PostgreSQL resource agent (RA) was inadequate for this master/slave arrangement
- We developed a custom design and RA
Warm Standby Slave with Streaming Replication
Master Fails
Slave is Promoted, IP Follows, Clients Reconnect

Could be out of date
No longer valid
Failed Instance Restarts as Slave

On-disk files erased
Failed Instance Restarts as Slave

Client A Client B Client N

Master IP

Master

full backup

Client A Client B Client N

Master
Failed Instance Restarts as Slave

- Master IP
- Client A
- Client B
- Client N
- Streaming replication

Slave

Master
Initial Startup

- In Pacemaker the startup sequence for a master / slave resource is as follows:
 Pacemaker starts resource as a slave on node A
 Pacemaker starts resource as a slave on node B
 Pacemaker chooses one instance to promote to master
Master / Slave Resource State Machine

```

class MasterSlaveStateMachine

   # States
   stopped
   slave
   master

   # Transitions
   manage
   start
   stop
   promote
   demote

```

Initial Startup Problem

• Problem: for our design, “starting as a slave” means to prepare a slave database as follows:
 1. Erase files on disk (both instances would do this, and wipe out all data!)
 2. Obtain a full backup from master instance (this would fail - there isn't one yet)
 3. Start slave database instance in PostgreSQL “hot standby recovery-mode” with streaming replication
Initial Startup Problem: Solution

- Custom PostgreSQL resource agent
- When told to start as a slave:
 If there is a running master, prepare and start slave as normal
 If there is no running master:
 Do nothing
 Return $OCF_SUCCESS to Pacemaker as if successfully started as a slave
When Pacemaker eventually promotes one instance:
 Start that instance as a master from disk image
 Prepare and start the other instance as a slave
Modified Master / Slave Resource State Machine

In these states monitor operations return $OCF_SUCCESS. Pacemaker is led to believe the database is running as a slave. It is only actually doing so in slave.replicating state.
Additional Enhancements

• “Fallback” images: rotation of regular database backups are taken on each node and stored locally. If normal HA mechanisms fail, or the database is corrupted, the RA will start the database from a fallback image.

• Enhanced monitoring: for our purposes, it is not sufficient to deem a database to be alive based on there being a running PID. Our RA performs representative database queries.
Geo Redundancy Extensions

- Database replication from primary geo site to backup geo site is the same PostgreSQL streaming replication
- Additional modifications to the state machine in the RA accommodate “local slaves” and “geo slaves”
- Significant additional complication when working across geo sites, as HA events (notifies, etc.) do not traverse the geo cluster
- The design pattern we used extensively is to perform various event transition checks during regular monitor operations
Geo Redundant Master / Slave Resource State Machine

- **stopped**
 - **start**
 - **slave. awaiting_role**
 - **local master up** // prepare
 - **geo master up** // prepare
 - **demote**
 - **local preparing**
 - **local replicating**
 - **done**
 - **promote**
 - **geo preparing**
 - **geo replicating**
 - **done**
 - **master**
Filesystem Replication
Filesystem Replication

- Some *silhouette* components are made highly available by storing their state on a filesystem shared between the nodes of the local cluster (e.g. DHCP server's conf and lease files)
- Select portions of this shared filesystem needed to be replicated to the backup geo site
- We explored various options, such as cluster filesystems (GFS, OCFS), DRBD layers, csync2, etc.
- For our application and constraints, these technologies were not appropriate
- We implemented a simple pull paradigm replicator component based on rsync
Dead Man's Switch
Dead Man's Switch

- *silhouette*'s geo redundancy architecture includes a dead man's switch implemented by a custom component called the geo-manager.

- The dead man's switch decouples geo cluster decisions from geo site service decisions.

- Basic idea: if the geo cluster decides that a geo failover should happen, a dead man's switch timer (default: 2 hours) is started.

- The geo failover can be manually confirmed or aborted before the timer expires.

- If the timer expires, geo failover happens automatically.

- Allows geo failover intervention by operations personnel.
Geo Role vs Geo Service Role

- Geo role: the role that the geo cluster wants a geo site to be. If geo-ticket is granted, the geo role is “provide service”. If revoked, the geo role is “replicate”

- Geo service role: the actual service role (“provide service” or “replicate”) that a geo site takes on at a given moment.

- The geo role as embodied by the geo-ticket is a suggestion to the geo-manager. The geo-manager controls the actual geo service role by a local cluster ticket called geo-service-ticket
Geo Role State Machine

Geo Role

replicating

geo-ticket revoked

provide service

geo-ticket granted
Geo Service Role State Machine

Geo Service Role

replicating

geo-ticket granted
// start DM timer

DM timer expired
// revoke geo-service-ticket

pending transition
to provide service

provide service

pending transition
to replicate

dm timer expired
// revoke geo-service-ticket

geo-ticket revoked
// start DM timer

fixed

replicating

set geo service role to replicate
// revoke geo-service-ticket

unset geo service role

fixed

provide service

set geo service role to provide service
// grant geo-service-ticket
Lessons Learned
Lessons Learned

- Geo Clustering for SUSE Linux Enterprise High Availability Extension 11 SP3 was not robust enough for production deployment. We had to use the Geo Clustering extension from SUSE Linux Enterprise 12.
- We were forced to implement basic infrastructure such as filesystem replication.
- Pacemaker and the geo cluster overlay did not always provide sufficient events for us to implement sophisticated resource agents. Our RAS rely heavily on regular monitor operations as an entry point to poll for events.
Unpublished Work of SUSE LLC. All Rights Reserved.
This work is an unpublished work and contains confidential, proprietary and trade secret information of SUSE LLC. Access to this work is restricted to SUSE employees who have a need to know to perform tasks within the scope of their assignments. No part of this work may be practiced, performed, copied, distributed, revised, modified, translated, abridged, condensed, expanded, collected, or adapted without the prior written consent of SUSE. Any use or exploitation of this work without authorization could subject the perpetrator to criminal and civil liability.

General Disclaimer
This document is not to be construed as a promise by any participating company to develop, deliver, or market a product. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. SUSE makes no representations or warranties with respect to the contents of this document, and specifically disclaims any express or implied warranties of merchantability or fitness for any particular purpose. The development, release, and timing of features or functionality described for SUSE products remains at the sole discretion of SUSE. Further, SUSE reserves the right to revise this document and to make changes to its content, at any time, without obligation to notify any person or entity of such revisions or changes. All SUSE marks referenced in this presentation are trademarks or registered trademarks of Novell, Inc. in the United States and other countries. All third-party trademarks are the property of their respective owners.